Massachusetts Institute of Technology Department of Economics Working Paper Series Quantile Regression under Misspecification with an Application to the Libraries Quantile Regression under Misspecification, with an Application Wage Structure
نویسندگان
چکیده
Quantile regression (QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean square error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR can be interpreted as minimizing a weighted mean-squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile correlation concept, similar to the relationship between partial correlation and OLS. We also derive general asymptotic results for QR processes allowing for misspecification of the conditional quantile function, extending earlier results from a single quantile to the entire process. The approximation properties of QR are illustrated through an analysis of the wage structure and residual inequality in US census data for 1980, 1990, and 2000. The results suggest continued residual inequality growth in the 1990s, primarily in the upper half of the wage distribution and for college graduates. Acknowledgment. We thank David Autor, Gary Chamberlain, George Deltas, Jinyong Hahn, Jerry Hausman, Roger Koenker, and Art-Lewbel for helpful discussions, and seminar participants at BYU, the University of Michigan, Michigan State University, the Harvard-MIT Econometrics Workshop, the University of Toronto, the University of Illinois at UrbanaChampaign, and the 2004 Winter Econometric Society Meetings for comments.
منابع مشابه
Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification
Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter β(τ) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker–Bassett estimator minimizes a weighted distribut...
متن کاملEstimation , Inference , and Specification Testing for Possibly
To date the literature on quantile regression and least absolute deviation regression has assumed either explicitly or implicitly that the conditional quantile regression model is correctly specified. When the model is misspecified, confidence intervals and hypothesis tests based on the conventional covariance matrix are invalid. Although misspecification is a generic phenomenon and correct spe...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملFirm Specific Risk and Return: Quantile Regression Application
The present study aims at investigating the relationship between firm specific risk and stock return using cross-sectional quantile regression. In order to study the power of firm specific risk in explaining cross-sectional return, a combination of Fama-Macbeth (1973) model and quantile regression is used. To this aim, a sample of 270 firms listed in Tehran Stock Exchange during 1999-2010 was i...
متن کاملFinite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...
متن کامل